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MULTIVARIABLE FLIGHT CONTROL SYNTHESIS AND

LITERAL ROBUSTNESS ANALYSIS FOR AN AEROELASTIC VEHICLE"
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Abstract

The vehicle to be augmented is representative of a large supersonic transport,

with first fuselage aeroelastic mode frequency at six rad/sec, very close to the

two rad/sec short-period mode. An integrated flight- and aeroelastic-mode

control law is synthesized using a previously developed model-following

synthesis approach. This technique, designed to yield a desired closed-loop

rather than an open-loop loop shape, involves a specific LQR formulation

leading to the model-following state-feedback gains. Then the use of

asymptotic loop transfer recovery is utilized to obtain the compensation that

recovers the LQR robustness properties, and which leads to an output-

feedback control law. A classically designed control law is also developed for

comparison purposes. The resulting closed-loop systems are then evaluated

in terms of their performance and multivariable stability robustness,

measured in terms of the appropriate singular values. This evaluation

includes the use of approximate literal expressions for those singular values,

expressed in terms of literal expressions for the poles and zeros in the vehicle

transfer-function matrix. It is found that the control laws possess roughly

equivalent performance and stability robustness, and the characteristics

limiting this robustness are traced to some specific loop gains and the

frequency and damping of the open-loop aeroelastic mode dipole.

Furthermore, closed-form literal expressions for these characteristics are

presented in terms of the stability derivatives of the vehicle. Insight from

such an analysis would be hard to obtain from a strictly numerical procedure.

* As Presented at the 1990 AIAA G.N.&C. Conf., Portland Or., Aug.,1990.
** Professor of Engr.; Assoc. Fellow AIAA
*** Research Assoc.; also Doctoral Candidate, School of Aero and Astro,
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1. Introduction

The supersonic and hypersonic capabilities of advanced aerospace

vehicles and the use of extremely light metallic or composite materials in

them can lead to vehicles with significant dynamic coupling between the

rigid-body and elastic motions. Ref. 1 and 2, for example, specifically

addressed this coupling at the earliest stage of system modeling and flight-

control synthesis.

Augmentation of an aeroelastic vehicle's open-loop dynamics via

feedback is often necessary to provide sufficient levels of stability and

performance (e.g., handling qualities). Feedback is used to stabilize the

attitude and or aeroelastic responses (such as static aerodynamic instability or

flutter) or just augment damping. Crossfeeds may also be used to improve the

dynamic responses. And the control-law must ensure this stability and

performance in the presence of vehicle modeling errors (i.e., robustness). For

aeroelastic vehicle applications, modeling errors can arise from uncertainty in

the aerodynamic model and neglected high-frequency structural modes both

leading to uncertainty in the pole/zero locations in the vehicle transfer

functions, for example.Such control objectives have been noted in the

literature 3-9.

If possible, the vehicle model (used in control synthesis) should aid in

the understanding and thereby provide insight regarding the vehicle physics,

exposing key dynamic characteristics and their causes. This can be achieved by

developing literal expressions for the vehicle transfer functions (gains, zeros,

and poles) in terms of vehicle model parameters, such as stability and control

derivatives or vibrational characteristics, which have their genesis in the

fundamental vehicle geometric Shape and structural layout.2,9,10 Models of

this type can be an extremely powerful tool in open-loop or closed-loop

design31 -

The control synthesis for an aeroelastic vehicle, and the systems'

analyses specifically using a literal model, is the subject of this paper. An

aeroelastic vehicle model is briefly presented and deficiencies in the vehicle

dynamics are noted. Control objectives are stated and sufficient conditions

ensuring an acceptable design are given. A new approach to implicit model

following (IMF) control synthesis 12,13 is briefly discussed and applied to the

vehicle model. A classical control synthesis approach is also considered for

the purposes of comparison. The resulting compensators and closed-loop
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systems are analyzed with a literal model to expose sources of system

characteristics that limit the closed-loop system stability robustness. It will be

shown, for example, that major among these critical characteristics are the

frequency and damping of the vehicles first aeroelastic mode dipole, and

closed-form expressions for these terms are presented in terms of the vehicle

stability derivatives.

2. The Vehicle Model For Feedback Synthesis

The configuration to be considered (from Refs. 2 and 10) is a large

supersonic aircraft of reasonably conventional geometry with a low-aspect

ratio swept wing, conventional tail, and canard. Controlled inputs consist of

elevator 5 E and canard (located near the cockpit) deflection _c • The

reference flight condition is level flight at Mach 0.6 and altitude 5,000 ft.

The complete non-linear modelling of this vehicle was the subject of

Ref. 2, and the development of low order linear models for control synthesis

was considered in Ref. 10. A fourth order state space realization and the

corresponding transfer functions for this linear model are given in Tables 1

and 2. This model involves the small perturbation longitudinal dynamics of

the effective short period and first aeroelastic modes. The responses of

interest are the rigid-body angle of attack c_, rigid-body pitch rate q, and pitch

rate q' measured at the cockpit. Here, rigid-body 0c and q are the angle of

attack and pitch rate associated with the vehicle mean axes. An approximate

measurement of q can be obtained from a rate gyro located at the anti-node of

the first elastic structural mode, and then lowpass filtering of the higher-

frequency modes. The effects of such filtering will not be specifically

addressed, but it would add additional phase loss in the loops, which is

considered in the robustness analysis

A fourth-order model was developed to accurately approximate the

appropriate frequency responses of a twelfth-order model, in the anticipated

critical frequency range of 1 to 10 rad/s. Figures 1 thru 3 show some of these

frequency responses from elevator input _E • (It is noted that the next

significant unmodeled aeroelastic mode frequency is above 13 rad/sec.) From

Table 2 and Figures 1 thru 3, the major open-loop dynamic deficiency is the

level of damping of the short period and aeroelastic modes. Furthermore, the

aeroelastic mode contributes significantly to the vehicle's dynamic responses.

3



3. Classical Control Synthesis

A classical design approach consists of sequential single loop closures,

using root loci, and relying upon knowledge of the physics of the elastic

aircraft for synthesis strategy.

Consider a 2 x 2 system from Table 2 with the following notation.

q(s) = gll(S)SE(S) + g12(s)Sc(s)

q'(S) = g21(S)8E(S) + g22(S)8¢(S)

(1)

First, the q'/8 c loop is closed to improve the aeroelastic mode damping.

Recall q' and 8c are a co-located sensor and actuator pair near the cockpit. The

control law 8 c = 8c'- k22 q' yields

k22g12g21 k-22g22 _8'
q = (gu " 1 + k22g22 )BE + g12(1 - 1 + k22g22 j ¢

g21 g22
q' - 8E + 8C'

1 + k22g22 1 + k22g22

(2)

n22
The root locus for I + k22-_- , where nij and d are the numerator and

denominator polynomials, respectively, of gi],is shown in Figure 4. A gain of

k22 = 0.05 rad/rad/s increases the aeroelasticmode damping by over 60% of

the open-loop value.

An elevator-to-canard crossfeed isnow introduced to reduce aeroelastic

mode excitation from the elevator. Interconnecting "up canard" with "up

elevator" will reduce aeroelastic mode deflections from the elevator because

the fuselage mode shape 2 is similar to the fundamental bending mode shape

of a slender beam.

The Crossfeed 8 c' = kcf 8 E yields

gu + k22(gug22" g12g21) + kcf g12

q = 1 + k22g22 8E
(3)

This can be simplified with the identity 7

gn g12 ] _rGdet [G] = det = g11g22- g12g21 = "_
g21 g22 .I

(4)
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where _¢Gis the transmission zero polynomial corresponding to the plant in

Eq.(1).
_c(s) = 89(s+ 0.081)(s+ 0.46) (5)

Substitution of Eq. (4) into Eq. (3) yields

nll + k22_/G + kcf n12

q - d + k22n22
(6)

It is now evident the crossfeed has the effect of moving the zeros of the

q/5 E transfer function (with the q'/_c loop dosed) from nll + k22_/G to n12.

The root locus for 1 + kern11 +n12k22_l/Gis shown in Figure 5. A gain of kcf = -1.5

rad/rad results in almost perfect pole-zero cancellation for the aeroelastic

dipole in the effective q/8 E transfer function.

Finally, the effective q/_5 E loop is closed to further improve the short

period damping. The control law 8E = p5 - kll q yields

P(gll + k22(gllg22 - g12g21) + lq:f g12)

q = 1 + k22g22 + kll(gll + k22(g_lg22 - g12g21) + kcf g12) 5
(7)

where p is the gain on the pilot input 5. The root locus for

nll + k22WG + kcf n12

1 + kll d + k22n22 is shown in Figure 6, as well as the final closed-

loop pole locations for a gain of kll = -0.05 rad/rad/s.

With some block diagram manipulation, the closed-loop system can be

represented as in Figure 7. Table 3 contains the effective closed-loop transfer

functions corresponding to the pilot command _, while Figures 1 thru 3 show

the corresponding frequency responses for the augmented vehicle. Short-

period damping has improved from _sp = 0.36 (see Table 2) to _sp = 0.54 (a 50%

increase), while the first aeroelastic mode damping has improved from _f_ =

0.073 (see Table 2) to _f_ = 0.12 (a 64% increase). These improvements are

apparent in the closed-loop frequency responses.

Significant improvement in the rigid-body (c_ and q) frequency

response shapes is also achieved. Besides improved short period damping,

the aeroelastic mode pole-zero "saw tooth" located near 6 rad/s in Figures 1
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and 2 are virtually eliminated when compared to the corresponding open-

loop behavior. This is a result of improved closed-loop pole-zero
cancellations (seeTable 3) as desired in the classical control synthesis. Or the

aeroelastic mode has been rendered undisturbable from pilot input.

4. IMF Control Synthesis12,13

A newly developed technique for the synthesis of flight-control laws

will now be outlined. Although LQR and LTR concepts are used in the

formulation of the algorithm, this approach is fundamentally different from

LQG/LTR methodology 4. LQG/LTR addresses the problem of obtaining

specified open-loop shapes, while the approach taken here is to synthesize a

control law that yields a desired closed-loop shape.

The system to be controlled is represented as

_(t) = Ax(0 + Bu(t)

y(0 = Hx(0

(8)

and the model of the desired dynamics to be followed is

9,re(t) = Amxm(t) + BinS(t)

ym(t) = Hmxm(t)

=-I00.

(9)

where 5 represents the input from the pilot. The error vector

e(t) = y(t) - ym(t) (10)

is constrained to be governed by stable, homogeneous dynamics

4,(t) = -Ge(t) (11)

where G is to be selected in the synthesis process. The model-following

control law is obtained by solving the LQR problem with the following

objective function.



J = _o [(6 +Ge)TQ(e+Ge) + uTRu] dt (12)

If the product HB is square and invertible, and the samefor HmBm , and if G is

chosen as G =- HmAmHm "1, then perfect model following is achieved

asymptotically as R in Eqn. 7 approaches the null matrix. If this is the case,

then the closed-loop poles approach the model poles (for G as defined above)

and any open-loop plant finite transmission zeros (or their stable mirror

image) 32

The solution to this problem is the first step of the control law synthesis,

yielding the state-feedback control law

u = Kx + Ks5 (13)

For the elastic aircraft model in Table 1, rigid-body angle of attack and

pitch rate, o_ and q, are the responses selected for model following, so that the

handling characteristics will be improved. Also it is desirable that the

response approximate that of a rigid vehicle. With this selection, the open-

loop plant transmission zeros are located at -23. 1/s and 35. l/s, and HB is

square and invertible.

The model of the desired dynamics is chosen to be

O_m(S)/8(s) = -3.5/(s + 0.89 -+j0.91)

qm(S)/8(s) = -3.3(s + 0.36)/(s + 0.89 _+j0.91)

Note that the short-period mode is well damped. With this selection, H m is

square and also invertible. The short-period poles will approach those of the

model, the aeroelastic mode poles will move toward the plant transmission

zeros (or their stable mirror images via the optimal control formulation), and

the 0_ and q time and frequency responses will be shaped to better approximate

those of a rigid vehicle.

With the state feedback gains K and K s so determined, compensators

will now be synthesized using the loop transfer recovery procedure 4,7,13,

which will then yield the output-feedback loop structure in Figure 9.

Although the 0_ and q responses were those used in the model-following step,

they are not the measurements to be used for feedback. The feedback

measurements are the same used for the classical design, q' and q. This



selection leads to minimum phase transmission zeros, for the loop-transfer

recovery, located at -0.081 and -0.46 1/s.

Figure 8 shows the resulting feedback compensators, prefilter stick

gains, and closed-loop structure after the loop-transfer recovery procedure is

completed, and some straight-forward pole-zero cancellations are performed

on the compensators. Note the compensators consist of relatively simple

lead-lag and lag-lead filters of second order. Table 3 contains the effective

closed-loop transfer functions corresponding to the pilot command 8, while

Figures 1 thru 3 show the corresponding frequency responses. Short period

damping has improved from _sp = 0.36 to _sp = 0.45 (25% increase) while the

first aeroelastic mode damping has improved from _fl = 0.073 to _f, = 0.12 (64%

increase).

These improvements are also apparent in the closed-loop frequency

responses. Besides improved short-period damping, the aeroelastic mode

pole-zero "saw tooth" located near 6 rad/s in the angle-of-attack and pitch-rate

responses in Figures 1 and 2 is reduced by roughly 10 db, when compared to

the corresponding open-loop response. This is a result of improved closed-

loop pole-zero cancellations (see Table 3) as desired in the IMF control

synthesis (i.e., following a rigid-body model).

5. Robustness Analysis

Now consider the generic feedback loop structure in Figure 9, which is

a generalization of the closed-loop systems in Figures 7 and 8, with response

vector y, control inputs u, commands Yc , and plant, compensator, and

prefilter transfer function matrices G(s), K(s), and P(s), respectively. The

feedback compensation in Figure 9 is assumed to be synthesized with a design

model G(s), but the "true" plant transfer function is taken to be G'(s).

Specifically, consider generic phase loss in each input channel to the plant, or

let

G'(s) = G(s) (e -_s I) (14)

This phase loss can represent, for example, unmodeled high-frequency

dynamics originating from structural modes, actuators, sensors, etc.

Rewriting G'(s) as



G'(s) = G(s)(I + E(s)) (15)

it canbe shown that

E(s)= (e -_s- 1) I (16)

where E(s) is the so called plant input multiplicative error. 4

The "true" closed-loop system poles are roots

characteristic equation, obtained from

det[I + K(s)G(s)(I + E(s))] = 0

of the "true"

(17)

If the nominal closed-loop system is stable and the required number of

encirclements of the critical point in Nyquist stability theory is the same for

both nominal and "true" systems, then a sufficient condition, developed

from Eq. (17), guaranteeing closed-loop stability under E(s) 4 is

_E(jco)] < __I + (K(jm)G(jo))) -1] , 0 < co _<,_ (18)

Eq. (18) is an indication of the system's multivariable stability robustness

margin.

Figure 10 indicates the stability robustness of the classically designed

closed-loop system, with the effect of multiplicative error due to generic

phase loss in each input channel displayed as well. Note from Figure 10 the

characteristic limiting the stability robustness is the dip in _cs[I+ (KG) -1] near 6

rad/s. In fact, the phase loss allowed using this criteria is limited to "¢< 0.3 s.

Figure 11 indicates the stability robustness properties of the IMF design,

again with the effect of generic phase loss displayed. Note again a similar

characteristic limiting the robustness of this loop. Here the allowable phase

loss is z < 0.35 s, only slightly better than the previous result.

The question now turns to the causes for this limiting characteristic.

Literal expressions for the vehicle transfer function poles and zeros in Table 2

are available from Ref. 10 for further analysis. Before this, however, a literal



expression for g[I + (KG) -1] is necessary. The approach to be taken here is

similar to that presented in Ref. 11.

With reference to Figure 9, consider a 2 x 2 closed-loop system with

1K(jco) = G(j¢o) = , I + (K(jco)G(jco)) -1 = (19)
k21 k22j' g21 g22 a21 a22

where

k21g12 + k22g22
a11=1 +

A

kllg12 + k12g22
a12 = -

A

k21gll + k22g21

a21 =- A

kllgll + k12g21
a22=1 +

A

A = det [KG] = [knk22 - k12k21] [gllgn - g12921]

(20)

The minimum and maximum singular values of I + (KG) -1 are given as

_I + (KG) -1] = _I/2 [(I + (KG)-I)(I + (KG)'I) *]

_I + (KG) -I1 = X1/2 [(I + (KG)-D(I + (KG)-I) *]

(21)

where K__ and _. denote the minimum and maximum eigenvalues,

respectively. _Xand K solve

det[XI - (I + (KG)-D(i + (KG)-D'] = K2 - (_K+ _)_. + _K_.= 0 (22)

where

K+_= la1112+ la1212+ la2112+ la22 12

= I alla22 - a12a21 [ 2

If ._X_ _, then from Eq. (23) ..Kis approximately given as

(23)

10



or

[ alla22 _ a12a21 ] 2

-_= [a1112+ [a12]2+ 1a2112+ 1a22 [2

[ alia22 - a12a21 I

_I+ (KG) -1] -(lal 1 12 + ]a12]2 + ]a21 ]2 + ]a2212)1/2

(24)

(25)

From inspection of Figures 10 and 11, it can be seen that the condition ._X,_ _.

(or U ,, _ is reasonably satisfied.

yields

Substitution of Eq. (20) into the numerator and denominator of Eq. (25)

1
I
alia22 - a12a21 I = I _1.1 1 + kng11 + k12g21 + k21g12 + k22g22 + A

I

]all[2+ 1a1212+ ]a2112+ 1a2212= [ 1--12-(]k21g12+k22g22+AI2+
A

[ kllg12 + k12g21 12 + Ik21gll + k22g2_ 12 + Ikllg n + k12g21 + A I2 )

(26)

These can be further simplified with the following observation 7

1 + kllgll + k12g21 + k21g12 + k22g22 + A = det [I + KG] = --¢cl (27)
¢ol

A = det [KG] =-_K_G
¢ol

where Cd and ¢ol are the system's closed-loop and open-loop characteristic

polynomials, respectively, and _K and _c are the compensator and plant

transmission zero polynomials, respectively. With the notation

kiJgPq = ¢ol
i,j,p,q = 1,2

where nki j and ngpq are the numerator polynomials of kij and gpq ,respectively,

substitution of Eqs. (26) and (27) into Eq. (25) yields the following literal

expression for _o'[I+ (KG) q ].

ICdl

_I + (KG) q] = (in11 12 + in1212 + in21 12 + in2212)1/2
(28)

11



n11 = nk2,ngn + nk=ng= + _K_G

n12 = nknng,= + nknng22

n21 = nk2ng n + nk=ng2_

n22 = nknng n + nknng2_ + _K_G

Observe that the "zeros" of G[I + (KG) -1] are nothing more than the

closed-loop poles, while the. "poles" of __[I + (KG) -1] depend on the plant's and

compensator's transfer-function zeros as well as their transmission zeros.

This result was first noted in Ref. 11, but the transmission zeros _K_G were

related to the so called coupling numerators.

Now consider the classically designed closed-loop system shown in

Figure 7. Here

gll = q(s)/SE(s)

g12 = q(s)/Sc(s)

gm= q'(s)/BE(S)

g22 = q'(s)/Sc(S)

VG(s) = 89(s + 0.081)(S + 0.46)

kll = nk_l = BE/q

k12 = nk_ 2 = 0

k m = n_l = 8C/q

k22 = nk_ = 8c/q'

• K = kllk22 - k12k21

with gij available from Table 2 and kij available from Figure 7. Substitution of

the above quantities into Eq. (28) yields

_I+(KG) 1] ._ I(j¢0 + 0.70_+jl.1)(j¢0 + 0.75+j6.0) I
0.94 [ (j¢0 + 0.22)(jro + 3.1+j3.8) I

(29)

It is evident that the augmented first aeroelastic mode poles, denoted

S2 + (2_¢.0)c12s + (C02)¢12= S2 + 1.5S + 37 = S + 0.75+ j6.0 (30)

and their low damping are responsible for the previously discussed critical

stability robustness feature near 6 rad/s in Figure 10.

From the classical design (see Section 3) and Figure 4, these poles are

primarily a function of the q'/8 c loop closure. With increasing q'/8 c root

12



locus gain k22 , these augmented aeroelastic mode poles originate from their

open-loop locations

s 2 + (2_m)f s + (m2)f, = s 2 + 0.88s + 36 = s + 0.44 + j6.0 (31)

and migrate towards their corresponding aeroelastic mode zeros in the q'/8 c

transfer function (see Table 2), denoted as

s 2 + f (2_c0)_.s + q(m2)q&, = s 2 + 1.5s + 8.9 = s + 0.73 + j2.9 (32)

Yielding the closed-loop locations in Eq. (30) for the selected value of k22.

From Ref. 10, the open-loop natural frequency and damping terms of

the aeroelastic mode poles and zeros in Eqs. (31) and (32) are approximately

given by

(1 Z__q_
+ VT )M%F1.

(o_)q - (oh2 - FI_) +
(0)12 - Fln,)

= 35 + 2.0

Iv_Fl_

(2_m)f, = (2_1c01 - F1%) +

= 0.62 +

f (0)2)_ - (('012 - FI_ ,) M8 c

M_ c %'(x)Flac

= 2.0

VT, + + VT )IV_ ]Fla

((012 - Fin ,)

0.35

Mn, + ¢1 '(x)(1 Zq
+ VT1) Mo_

(33)

(34)

q(2_m)_, = (2_]rth -Flfl)MSc + ¢l'(x)MqFlr_
Msc - ¢l'(x)Fl&

= 0.82

¢1,(x)(1 _ Za MctFla:
+ VT )VT--_

(o)12 -Fln )Msc

- (-0.67)

with the following numerical values:

13



Z{_ _-0.416 ft/s 2 (1 + _ 1.03
VT 1 VT 1) =

Z% = -0.00267 1/s M a = -3.33 1/s 2
VT_

Mq=-0.830 1/s M_ =-0.0655 1/s 2

Ivlnl=-0.00390 1/s M8¢=0.809 1/s 2

Fla=-1,040 1/s 2 Flq=-78.4 1/s

F18c = -631 1/s 2 (0}12 - Fl.q) = 34.8 1/s 2

(2_10 h - Fin- _) = 0.621 1/s _l'(X) = 0.021 ft/ft

The above parameters are functions of the flight velocity VT_; rigid-

body and aeroelastic aerodynamic stability derivatives Z i , M i , and Fi; first in

vacuo elastic mode shape, vibration frequency co1 and damping ratio _1- These

vehicle parameters appear explicitly in the linear equations of motion for the

elastic aircraft 10 listed below.

zo{_ = _ + (1 + +--111 + _TTTrh + --BE +--8cVT_ VT_ )q VT 1 VT 1

{!t = Ma{x + Mqq + lVfn_ rll + M%f h + MSE 8 E + Mac 8 c (35)

¢11= Fla + Fl.q - (o312 - Fln_) Th - (2_ffol - F1 _,)fll + F18E 8E +Fla: 8c

q' = q - 01'(x) ¢11

As seen from Eq. (33), the frequency of the open-loop aeroelastic mode

poles is primarily due to the elastic mode structural frequency and

aerodynamic stiffness (i.e., (0312 -Fln)). Also, the inherent low damping in

this mode is primarily due to the elastic mode structural and aerodynamic

damping (i.e., (2_1c01 -FI_ _) ). However, note also that approximately 1/3 of

the total damping is due to aerodynamic coupling between the rigid and

elastic degrees of freedom. It is now clear which key vehicle and compensator

parameters contribute to the critical stability robustness properties of this

closed-loop system.

Now consider the IMF design closed-loop system shown in Figure 8.

Here

gn = q(s)/_(s) kll = _SE(s)/q(s)
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g12= q(s)/gc(s)

g21= q'(s)/gE(S)
g22= q'(s)/ 8c(S)

_c(s) = 89(s + 0.081)(s + 0.46)

k12 = gE(s)/q'(s)

k21 = 8c(S)/q(s)

k22 = 5c(s)/q'(s)

_/K(S) = 0.00091(s+0.060)(s+0.35+j0.21)(s-1.9)

with gij available from Table 2 and kij available from Figure 8. Substitution of

the above quantities into Eq. (28) yields

_oII + (KG) -1] = I(j¢0 + 0.56 + jl.1)(jc0 + 0.73 + j5.8) I
0.66 1(jc0 + 0.83 _+jl.0)(jc0 + 4.6) I

(36)

It is evident that again the augmented first aeroelastic mode poles

s 2 + (2_CO)c12S+ (c02)ct2 = s 2 + 1.5s + 34 = s + 0.73 4- j5.8

and their low damping are responsible for the critical stability robustness

feature near 6 rad/s in Figure 11. From the IMF design (see Section 4), these

poles originate at their open-loop location and migrate toward the

transmission zeros (or their stable mirror image) defined through the model-

following formulation, as the control weighting in the loss function is

reduced (or the loop gains are increased). Although literal approximations for

these transmission zeros are still being developed, the above expressions for

the open-loop aeroelastic poles again reveal the major source of these critical

characteristics.

6. Conclusions

An integrated flight- and aeroelastic-mode control law was synthesized

for a very flexible supersonic vehicle, using a previously developed model-

following synthesis approach. This technique, designed to yield a desired

closed-loop rather than an open-loop loop shapes, involves a specific LQR

formulation leading to the model-following state-feedback gains. Then the

use of asymptotic loop transfer recovery is utilized to obtain the

compensation that recovers the LQR robustness properties, and which leads

to an output-feedback control law. A classically designed control law was also

developed for comparison purposes, and parallels between the results

obtained with the two approaches are observed.
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The resulting closed-loop systems were evaluated in terms of their

performance and multivariable stability robustness, measured in terms of the

appropriate singular values. This evaluation utilized approximate literal

expressions for those singular values, expressed in terms of literal

expressions for the poles and zeros of the vehicle transfer functions. It was

found that both control laws possessed equivalent performance and stability

robustness, and the characteristics limiting this robustness were in both cases

traced to some specific step in the synthesis process, as well as the locations of

critical open-loop poles and zeros (or transmission zeros). Furthermore,

closed-form literal expressions for these characteristics were presented in

terms of the stability derivatives of the vehicle. The insight gained from this

analysis is considered invaluable to the control system designer, and

unavailable from strictly numerical analysis.
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Table 1. Elastic Aircraft Model

_(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

 rad ly= (rad/s)| , u =
(rad/s)J

5 E (rad)-
_5C (rad)

I-0.517 3.85 0.150 4.24 1-9.39-0.318-0.523-4.67

A= 1 0.0438 0.0164 -0.0128 -2.06 J[_-0.0591-0.01650.764-0.986

-292.-182.]

-598.-424.

B = 53.7 -31.2|

J-38.4 17.7

0.000480 -0.0000247 -0.0188 -0.0286 1
C = 0.00147 0.00170 -0.0264 0.0549

-0.0222 -0.0213 -0.0372 0.0687



Tabl_ 2. Elastic Aircraft Transfer Functions

_(s)/SE(S) = -0.036(s - 0.018 + j4.9)(s + 150.)/d(s) rad/rad

q(S)/SE(S) = -5.0(S + 0.36)(S + 0.11 4-j4.9)/d(s) rad/s/rad

q'(s)/SE(S) = 15.(s + O.040)(s - 2.9)(s + 4.0)/d(s) rad/s/rad

ot(s)/Sc(S) = 0.0044(s + 1.8 4- j9.0)(s + 200.)/d(s) rad/rad

q(s)/_c(S) = 0.80(s + 0.33)(s + 1.3 4- j9.1)/d(s) rad/s/rad

q'(s)/Sc(s) = 15.(s + 0.056)(s + 0.73 4-j2.9)/d(s) rad/s/rad

mwm

where d(s) = (s + 0.47 _+jl.2)(s + 0.44 4- j6.0)



Table 3. Closed-Loop Transfer Function8

Classical Control Synthesis

a(s)/5(s) = 3.7(s + 0.70 _+j5.9)(s + 160)/d(s)

q(s)/5(s) = 0.025(s + 0.35)(s + 0.71 _+j5.9)/d(s)

q'(s)/_(s) = 5.1(s + 0.049)(s + 1.0 + j6.6)/d(s)

where

rad/rad

rad/s/rad

rad/s/rad

d(s) = (s + 0.70 + jl.1)(s + 0.75 + j6.0)

IMF Control Synthesis

o_(s)/5(s) = -0.0062(s + 0.22 + j5.1)(s + 150)/d(s)

q(s)/5(s) = -0.87(s + 0.36)(s + 0.34 + j5.1)/d(s)

q'(s)/8(s) 2.0(s+ 0.042)(s - 3.6)(s + 4.5)/d(s)

where

rad/rad

rad/s/rad

rad/s/rad

d(s) = (s + 0.56 _+jl.1)(s + 0.73 + j5.8)
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Abstract

The simplification of a high-order, literal model for large flexible aircraft is discussed.

Areas of model fidelity that are critical if the model is to be used for control law synthesis are

presented. Several simplification techniques, some new and some widely available, that can deliver

the necessary model fidelity are presented and applied to a model from the literature. The

techniques include both numerical and analytical approaches. An analytical approach, based on

first-order sensitivity theory, is shown to lead not only to excellent numerical results, but also to

closed-form analytical expressions for key system dynamic properties such as the pole/zero factors

of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle

vibrational characteristics and rigid-body and aeroelastic stability derivatives, thus providing

insight in the underlying causes for critical dynamic characteristics.
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Introduction

To simplify the dynamic analysis and control synthesis, or to ease computational burden in

simulation, simple low-order models of the vehicle dynamics are sought. These models, however,

must possess the requisite validity in modeling the vehicle characteristics significant in the

application. If the model will be used in the synthesis of a feedback system, characteristics critical

in a feedback system must be well modeled. This is the first goal of this work, and techniques

capable of delivering valid models for multivariable control synthesis will be presented.

A second goal is related to the fact that the physics of the vehicle must be well understood,

and models which expose the underlining physical causes for critical dynamic characteristics of the

vehicle are desired. This is especially significant in light of the fact that many model reduction

procedures in the literature rely on numerical techniques and/or transformations which lead to a

model in a form such that the physics of the system are far from transparent in the new model

structure. Approximate literal expressions for the factored transfer functions are presented herein

that aid in understanding the physics of aeroelastic vehicles, and yet constitute model

simplifications as well.

Modeling For Dynamic Analysis and Control Synthesis

To accomplish the second goal, a literal model for the vehicle must be available, and the

development of such was the subject of Ref. 1. From the nonlinear, literal, time-domain model of

an elastic aircraft, the linearized small perturbation longitudinal dynamic equations were developed

in the reference. Transformation to the frequency domain leads to the elastic aircraft model in

polynomial matrix form2 given in Table 1, where elevator deflection _E and canard deflection 5 c

are the assumed inputs (for a specific configuration example to follow). Typically, vertical

acceleration _or pitch rate q' at some location along the fuselage axis are measured responses of

interest yielding two additional response equations. This model governs the small perturbation

dynamics of the rigid-body de_ees of freedom consisting of forward speed u, angle of attack a,

pitch angle 0, and pitch rate q, and the generalized elastic de_ees of freedom Tli, corresponding to

the i'th elastic mode in the model. Parameters of interest appearing in Table 1 are trim velocity VT,

_and q' sensor location relative to the vehicle center of mass x, stability derivatives X i , Z i , M i ,

and Fij, elastic mode vibration frequencies _i and damping ratios _i, and elastic mode shapes ¢_i(x)

and mode slopes _i'(x) at the sensor location.

Numerical values for the parameters in Table 1 are also available for the vehicle studied in

Ref. 1. This is a large supersonic aircraft, of reasonably conventional geometry with a low-aspect

ratio swept wing, conventional tail, and canard (i.e., similar in geometry to the B-1B but much

more flexible). The numerical model contains four free-free elastic modes (resulting in a twelfth

2



ordermodel),andtheaz' andq' sensorlocationcorrespondsto that of thecockpit. Thein-vacuo

vibration frequenciesare 6.3, 7.0, 10.6, and 11.0 rad/s (from Ref. 1), and are considered
representativefor a largesupersonic/hypersoniccruisevehiclewith considerableflexibility. The
referenceflight conditiontakenhereis at Mach0.6andaltitude5,000ft. By inclusionof only the
first four elastic modesof the structure,a model simplification has already occurred,the

implicationof whichwill bediscussedbelow.
Now considera genericfeedbackconfigurationillustrated in Figure 1, representingthe

flight and/orstructural-mode-controlloops,for example. It consistsof the interconnectedplant
(vehicle)matrixG'(s)= G(s)+ AG(s)andcontrollermatrixK(s),withexcitationsfrom commands
Yc, and responsesY. All signalsaremulfivariable, in general,andG'(s)and K(s) aretransfer
functionmatrices.

Of paramountimportancein controldesignis thatanysimplified modelG(s) usedin the

analysisandsynthesisaccuratelyreflectsthestabilityrobustnessof the"true" closed-loopsystem,

wherestabilityrobustnesshererefersto thesystem'sability to maintainstabilityin thefaceof loop
uncertainties.5 The genesis of this uncertainty could be due to parameter variations or unmodeled

dynamics in G and due to modeling simplification, specifically.

Stability of the "true" closed-loop system is determined by the zeros of the ("true") return

difference matrix determinant

det (I + GK + AGK) = 0

Assuming the nominal closed-loop system (GK) is stable and the forward loop perturbation AG is

stable, the "true" closed-loop system is stable if

det (I + GK + eAGK)ls=jo ¢ 0

for all co, and all _: 0 _<a <_ 1 or, equivalently, if (I + GK(jc0) + 8AGK(j_)) remains nonsingular for

all c0and alle, 0 <E_< 1.

It can be shown 3 that a sufficient condition to guarantee the above is to require

O(AGK(jco)) < g(I + GK(jco))

for all co. Here _ and _ denote the minimum and maximum singular values of a matrix,

respectively. Therefore, the key frequency ranges where stability robustness is potentially a

problem is where

3



_(AGK(jo_))--g(I + GK(jo_)) (1)

over the (physically) possible AGK.

For SISO systems, Eq. (1) is easily interpreted on a Nyquist dia_am. The right-hand side

of Eq. (1) corresponds to the distance between a point on the nominal Nyquist contour GK(jm) and

the critical point at -1. The left-hand side of Eq. (1) corresponds to the distance between the above

point on the nominal Nyquist contour and the corresponding point on the perturbed Nyquist

contour, G'K(jo3). Regions where these two distances are approximately equal define the key

frequency ranges. The concept generalizes to MIMO systems, and therefore, Eq. (1) defines the

only frequency ranges where stability robustness is potentially a problem, and certain frequency

ranges are more critical than others.

One frequency range pinpointed by Eq. (1) is of course the crossover frequency (i.e., the

frequency range where u(GK) -- _(GK) = 1) where relatively small variations in the loop GK can

be destabilizing. Moreover, it also includes frequencies where small changes in G can create large

AGK satisfying Eq. (1) (e.g., systems with near pole-zero cancellations within G in the vicinity of

the joy-axis).

Introduction of any simplified plant model into the loop alters the loop shape (e.g., open-

loop Bode) from the "true" loop shape. If a desirable 3 loop shape is still achieved, however,

deviations from the "true" loop shape may occur in the high and low frequency ranges, and not

significantly affect the results of the design. At low frequencies, adequate loop gain (in GK) is all

that is required for acceptable command following/disturbance rejection. In the high-frequency

range, the loop gain (in GK) must have adequate "roll off" for acceptable noise attenuation.

Consequently, an extremely accurate approximation of the "true" system (G') is frequently not

required in either the low or high frequency range as long as the two above criteria are met. This

again leaves the mid-frequency range or crossover region as the critical region that must be

accurately approximated by any simplified model. In summary, the primary modeling requirement

imposed by feedback synthesis applications is to achieve an accurate approximation for the

frequency response of the plant in the range of loop gain crossover, if the loop gain is large above

this frequency range and the loop gain is small below this range. Clearly, the control law K(s)

affects these loop gains and determines the crossover range.

A measure of how well a simplified plant model G(s) approximates the "true" plant model

G'(s) over the crossover frequency range (c01 < o_ < ¢02) is the element by element frequency

response error. Let the frequency response error matrix be defined by

E(j¢o) = G'(jco) - G(.jco) (2)

4



Eachi-j elementinE(jo_)describesthefrequencyresponseerrorassociatedwith thecorresponding

elementin G'(j03).ForG(s) to accuratelyapproximateG'(s)overthecrossoverfrequencyrange,

eachelementof E(j03)andG'G03)mustsatisfy[Eij(J03)l<<lG'ij(J03)lfor all 03,col< 03< 032.Thiscan

bevisualized_aphically by superimposingthefrequencyresponsesof eachelementof G'(s)and

G(s),andnotingthedifferencesbet_,eenthetwo.
A matrix normdefinedby the maximumsingularvalueof thematrix E(j03)mayalsobe

usedto provide a measure of "smallness" for the error E(jm). Recall that the maximum singular

value of E is defined as

(E) -- _I/'2(EE*)

where % denotes the maximum eigenvalue. It can be shown 4 that this norm bounds the magnitude

of each element in E(j03), i.e. IEij(J03)l _< b(E(,j03)).

Let the largest value of D(E(j03)) over the crossover frequency range define a "crossover

frequency norm"

max
IIE(j03)[lcf = _(E(j03) )

o,< o < o2 (3)

and the value of this norm may be taken as a relevant measure of closeness between the true and

approximate model. Note that using the %0 norm", or

max

IIE(jc0)lloo = o<co<_ (s(E(jco)

would be far too conservative for our purposes here.

Order Reduction and Simplification

Some order reduction techniques that can lead to good approximations meeting the above

criteria will now be highlighted.

Frequency-Weighted Internally-Balanced Reduction 5 - Assume the system in Table 1 is

described in state space form, or

x=Ax+Bu

y = Cx +Du

(4)
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Two frequency-dependent matrices of interest are

X(jm) = (jmI- A)qB

Y(jm) C0oaI - A) -1

X(jo) reflects the system's input behavior, since each column is the state vector's frequency

response associated with the related input, whereas Y(j¢0) reflects the system's output behavior,

since each column is the output frequency response associated with the related state. The

controllability and observability grammians are related to X(jm) and Y(jm) by

x=--I f'x0co)xT(_jco)dm
2X -

v =! ('VO o)yT(.j o)do 
2x J

Note finally that X(jo0 and Y(jm) are ultimately related to the system's frequency response G(jm)

= CX(jc0) + D = Y(jm)B + D.

By definition, the state directions ti and ui decompose X and Y into the following outer

product sums

X = ZtiVciti T
i=l

n

Y =ZUiVoiUi T
i=l

where Vci and Voi are real nonnegative scalars, and where uiTti = 1 and uiTtj = 0 for all i_j. It is

known 6 that the importance of the contribution from state direction ti to the input-output behavior

(i.e. frequency response) of the system is reflected by the relative magnitude of the product VciVoi

where this product is the ith Hankel singular value of G(s), each of which is real, nonnegative, and

invariant to state-space transformation. The matrix product

XY = ZtiVciVoiUi T
i=1

6



shows that the state directions ti are eigenvectors of XY, and the products VciVoi are the

eigenvalues. In other words, state directions ti most significant to the system's input-output

behavior have the larger values for VciVoi.

This leads to the so called internally-balanced reduction technique 6. The reduced-order

model is obtained by using the state directions ti tO transform the system to internally balanced

states and truncating the least important states, based on the relative size of the eigenvalues VciVoi.

As noted in Ref. 5, the reduced-order model will inherently lead to a good approximation in the

frequency range where the full order system's frequency response magnitude is large, but this may

not be the frequency range of interest (i.e., loop crossover may occur in another frequency range).

To correct this situation, frequency weighting has been incorporated into this approach 5,7.

Consider a weighting filter

x_ = A,,x_+ B._

U = Cwx w

which is well-attenuated outside the frequency range of interest. Let this filter be in cascade with

the oriNnal system. Decomposing the controllability and observabilit3, grammians for the cascaded

system leads to frequency weighted internally balanced states which can readily be reduced by

truncation as before. Table 2 from Ref. 5 summarizes this frequency weighted internally balanced

reduction. Note that frequency-weighted internally-balanced reduction can only be applied to

asymptotically stable systems or asymptotically stable subsystems of a larger system. 5.7

Truncation - Assume the system is in polynomial matrix form, as in Table 1, or

A(s) c(s)'l rZ(s)'l rB(s)'l
r(s) m(s).l [Zr(S).l = [br(s).l U(s) (5)

Y(s) = M(s)Z(s) + mr(S)Zr(S) + P(s)U(s)

Here Y(s) is the vector of responses, U(s) the vector of inputs and [ZT(s), Zr(S)] T the vector of

system de_ees of freedom. Assume that Zr(S) is a scalar, and then m(s) is also scalar; r(s) and

br(s) are row vectors; and c(s) and mr(s) are column vectors. Define the notation AliBi as the

matrix formed from the matrix A, but its i th column is replaced by the jth column of B. Then using

the properties of the determinant of a partitioned matrix, along with Cramer's rule, yields

7



Zi(s) m det [AlIBi - cm'l(rilbr_)]

Uj(s) - m det[A - cm-lr]

Zr(S) _ brj det[A - Bibr,-lr]

Uj(s)- m det[A - cm'lr]

where the (s) denoting functional dependence has been dropped for notational brevity.

Assume now that

CkrI << m ; k,1 = I, ..., n

B jr 1 << b%, ; k,1 = 1..... n

ck(rilb%) 1 << m ; k,l = 1..... n

(6)

where dim (Z(s)) = n. Then

AilBj - cm'l (rilb%) ._ AilBj

A - Bjb%-lr _ A

A - cm-lr -- A

and Z i and zrbecome

A

_-- Zi(s) _ det [AilBj]
Uj(s) Uj(s) - det [A]

Zr(S) b%/mUj(s) = •

(7)

Note that Zi(s)/'Uj(s) is simply that obtained if the degee of freedom Zr was truncated from the

model (or not included in the modeling from the outset).

Now (consistent with the model in Table 1), let m(s) = arS 2 + drs + kr and b%(s) = b% (at,

dr, kr, brj scalar constants), and consider a high-frequency approximation, or let Isl ---) *,,, leading to

lbr(s)/m(s)l_ ---) 0. In this case (or if mrbr_ -- 0 in general), the approximate model is the well-known

truncated model

A

Y(s) -- M(s)Z(s) + P(s)U(s)

A

Zi(s) _ det[AilB i]
Uj(s) - det[A]

8



This approximation will produce a model with the desired characteristics when assumptions (6) are

valid, and the crossover frequency is well above

.�-E/a: and 2TF/a:

In the special case _oith the system transformed into modal coordinates (5) becomes

00 (sI- A r) [Nr(s)J

Y(s) - M N(s) + MrNr(s) + PU(s)

with A and Ar diagonal. Now assumptions (6) are clearly satisfied. Truncation of the modal

coordinates Nr will therefore lead to a good approximation in the frequency range well above the

magnitude of the associated eigenvalues (Ar). In fact, the transfer-function error resulting from

this order reduction is

E(s) = G'(s) - G(s) -- Mr(sI - Ar)'lBr

It can be seen that each elehaent of E(s) will be small when isl :_ IArii I and

Isl >> I(MrBr)ijl.

Re_idualizatiQn - Referring back to (5), and assuming the same structure for m(s) and

brj(S), consider now a low-frequency approximation such that Isl _ 0, leading to brj(s)/m(s) --_

br/k r, a constant scalar. In this case, the approximation is the well-known residualized model

r(s)
^ q

M(s)Z(s) + mr(S) __--_[_(br/kr)Ui(s) +P(s)U(s)
j=l

A

Zi(s) _ det[AjlBj]

Uj(s) - det[A]

where dim(U(s)) = q. This model will have the necessary validity when assumptions (6) are

satisfied, and crossover frequency is well below "_--kr/arl.

Again consider the special, case where the system is in modal coordinates, and then

assumptions (6) are clearly satisfied. This residualized-mode model will therefore lead to a good

9



approximationin thefrequencyrangewell belowthemagnitudeof theassociatedeigenvalues(Ar).

In this case, the transfer function error is

E(s) = Mr(sI - Ar)'lBr + Mr(Lr)'lBr

It can be seen that each element of E(s) will be small when Isl << IArii I.

Approximate Literal Expressions - The transfer function matrix G(s) for the lower-order

model can be computed numerically using the previous methods. Attention will now turn to a

simplification technique, related to the technique in Ref. 2, which yields approximate, closed-form

literal expressions for the poles and zeros of the system transfer function (matrix).

The method is based on f'u'st order sensitivity theory, and can in principle be applied to a

model of higher order. The basic ideal is to obtain approximations for the factors of a polynomial

by approximating the coefficients of the polynomial by the first two terms of a Taylor series. To

keep the algebra tractable here, and to explain the method by means of example, consider an

already simplified system in polynomial matrix form, as in Table 3. This particular model may be

obtained via reducing the model in Table 1, by truncating the surge velocity u and residualizing the

second thru the fourth generalized elastic deflections rli for the aircraft in Ref. 1.

Consider now the solution for one element of the transfer function matrix, namely

Applying Cramer's rule to the model in Table 3 yields

D(s) = - (V_-_ + V--_)" [MctFl_s + FI.(s2 - Mq s)]TI

- (M s +M )'tFlqs(s Z_a-
- VT_) + (1 + VT )Fa.s]

+

(8)

Z= 2 Z__
(s2+(2_l°31"F1ria)s+(ah2-Flrl,))" [(s - _TTT)(S. - Mqs) - (1 + VT )Mcts]

Z

N(S) = _--F_-_° {s" []k_(s2+(2_l ¢ayl-F 1Ti )s+(c.Ol2-Flrl )) + iml.(M ri as +M_a)]
VT_

" _l'S" [MctFlqS + FI.(s 2 - Mqs)]}

Za
+ MSE" {S" [ (S- _-_Ta)(S2+(2_lCOl-F1 ri_)s+(°'h2-Flrh)) " Fl,,(xr_-_t's

...... vWl

10



z_s_
_ ¢l's*[Flq s(s- VT---7)Z_ + (1 + VT)F1s]}

+ FI_iE'{s" [(s - V_)(Mfi,s +Mn,) + M,_(v-_S

Z_ 2 Z--N-

- _]'s,[ (s - _T )(S - MqS) - Ma(1 + VT )S]}

Also, consider the n_merical solution for the same transfer function obtained via any appropriate

means, or

Gaq,_S) = 13s(s + 0.23)(s - 3.4)(s + 4.0) (9)
s(s 2 + 0.88s + 1.6)(s 2 + 1.0s + 36.)

8= ,1 ,BE .1 ,BE .1 ,BE

Kffu s[s + sp _)q, ] Is + fh(_)q, ] [s + q2(_)q, 1

s[s2 + (2 oa)spS+ (OP)sp][s2 + (2 oa)fas + (&)fl]

n4s 4 + n3 s3 + n2 s2 + nls

= s 5 + d4s 4 + d3 s3 + d2s 2+ dlS

One now selects approximate terms, one from D(s) and one from N(s), in (8) which best satisfy

the following two criteria.

1. The literal expressions for the approximate terms must factor into the same structure as

found in the numerical model (poles/zeros). For example, the literal expression for the

approximate term for D(s) must have 2 pair of complex roots plus one root at the oriNn,

while that for N(s) must have 4 real roots, including one at the origin (see eq. (9)).

2. The numerical factors calculated from those approximate terms should be as close as

possible to the true numerical factors in (9).

In this example, the approximate terms are selected as the underlined terms in (8) yielding

Ig(s) s[s 2 (_Z.___ Mq)S Z._ Z_q_
= + - + (VTMq - (1 + VTa)IVIct)]VTa

• [s2+(2_lml-Fl_ )s+(oh2-Fl-q )]

= s[s 2 + (2(m)spS + (K'2)sp] [s 2 + (2 (¢o)fls + (K*2)fl]

(10)
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= s(s 2 + 1.2s + 3.8)(s 2 + 0.62s + 35.)

and

=S 5+d4s 4+d3s 3+d2s 2+ dlS

1W(s)= (Mac- ¢I'F1aE)s[s+ (- V_)] [s + (b - [b2 -4c] 1/2 (b + [b2 -4c]1/22 )] Is + 2 9]

(:)_F_] .:,_E, (!)_,E]
--K_Es[S+sp Sq' [S+fl]('_)q' '[S+f12_q

= 13s(s + 0.42) (s - 3.3) (s + 4.2)

where

= gi4s4+ E3s3+ n2s2+ nls

b = (2_:°h-FN I)M_ + _:'MqF:{::

(oh2-Fln)M _
C-

M_ -_:'F::_

Now, by expanding (9), one can determine the functional dependence of the polynomial

coefficients upon the factors. For example,

= (O_)sp(O)_)fl (11)

nl K_E .I,8E .1,8E .I,8E

Noting this functional dependence,-expand each coefficient in a Taylor series where the leading

term in the series is taken as the approximate coefficients in (10). For example,

i2



- ad'l
dl = dl +--_&r +

n 1 = n l + -3-TAY +

(12)

where

&x = [ (cO2)sp - (0_)sp-'_ , (2_0a)sp- (2 _'O-))sp , (¢02)f1 _ ( _,2)fl, (2_¢.0)fI _ (2_'¢0)f 1 ]T

= [ A(m2)sp, A(2rTcO)sp, k(_o2)q, a(2_'co)fi ]T

= sp,T, q, -sp( , fllXTJq, fl 1 jq, , f12,TJq, _f12( )Sq,E]T

7,8E 1..8E Afll(T)_(E Af12(T)SqE) ]W= [ A_Kq,, &p(T)Cl, , _ ,

Corrections to the approximate factors (i.e. Ax and ky) are now sought. Using the Taylor

series for each polynomial coefficient such as (12) and neglecting higher order terms, one can

solve for Ax and Ay. This calculation requires the literal expressions for di - di and ni - ni

obtained from the nonunderlined term in (8) and the literal expressions for

obtained from differentiation of expressions obtained similar to (11).

The approximate literal model is finally obtained by summing the approximate factors and

the corresponding corrections. For example,

where

N(s____._)G-,_'s_=
q-. D(s)

D(s) -- s[s 2 + { (2_¢O)sp + A(2_r..0)sp }S + { (_2)sp + A(_02)sp }]

• [S2 + { (2_'_)fl + A(2_'C0)_1 }S + { (_'2)fl + A(_')fl }]

and

13



•Is+{fll .- + )3Is+ + }3

Example Results

To be obtained now is a reduced order model that is valid in the anticipated crossover

frequency range. Assume the control system requirements are such that this range must be 1 to 10

rad/s. The vehicle discussed previously will be modeled, and the "true" model is taken as that in

Table 1 with four elastic modes. A fourth-order model will be sought based on the observation

that the "true" model has two complex modes in the crossover frequency range.

Two reduced order models Will actually be obtained. One model is obtained by truncating

the surge velocity u and pitch angle O, and employing the frequency-weighted internally-balanced

technique using a band pass filter with unity magnitude in the 1 to 10 rad/s frequency range, and

40 db/dec magnitude roll off on either side of the pass band. Here, truncation of u was necessary

to eliminate an unstable phugoid pole, and truncation of O was necessary to eliminate the associated

pole at the or'iNn. The other reduced-order model (an effective fourth-order model due to a

pole/zero cancellation at the origin) is obtained by umncating the surge velocity u (i.e., a short

period approximation), and residualizing the second thru the fourth generalized elastic deflections

Tli. Tables 4 thru 6 contain the transfer functions for the original full-order and the two reduced-

order models, while Figures 2 and 3 show the q'/SE and q'/N2 frequency responses, respectively.

The q'/SE and q'/SC frequency-response errors (see Eq. (2)) are simply the distances

between the Bode magnitudes of the "true" model and the reduced-order models in Figures 2 and

3. Observe that the reduced-order models accurately approximate the "true" model in the 1 to 10

rad/s frequency range as desired. Similar results are obtained for the other transfer functions in

Tables 4 thru 6, in that the reduced-order models are highly accurate in the 1 to 10 rad/s frequency

range, asdesired. Specifically, the ';crossover frequency norm" OE(j03_f, see F_.q. (3)) is 38 for the

u'uncation/frequency-weighted internally-balanced model, and 170 for the truncafion/residualization

model, for the model units selected.

Discussion of Results

For control synthesis applications, critical features in the q'/5 E transfer function, for

example, are the nonminimum phase zero located near 3.4 rad/s (see Table 6 and Figure 2) and the

lightly damped complex poles near 6 rad/s (see Table 6 and Figure 2). These characteristics have
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beenshown8to limit thestabilityrobustnessof acandidatemuhivariablecontrol law,basedona
literal singular-valueanalysis.Also, acritical featurein theq%c transferfunction is thedipole

structurenear3rad/sand6rad/s(seeTable6andFigure3).Recallthatnonminimumphasezeros

limit theallowableloopgainandyieldundesirableinitial time-responsebehavior.Lightly damped

complex polescan also limit stability robustness,as well as contribute to undesirabletime

responses.Dipolestructurescanalsocriticallyaffectclosed-loopstability.
To exposethephysicsbehindthesecriticalcharacteristics,anapproximateliteral modelis

developedfrom thetruncation/residualizationmodelgivenin Table3. Noteahigherordermodel
couldconceivablybeused. As we shallsee,however,this is not requiredhereto obtainvalid
results.

Table7 lists theapproximateliteral expressionsfor thefactoredtransferfunctionswhere

the underlinedtermswere selectedasthe approximateterms,andthe remainingtermsare the
corrections.Table8 alsocontainsthetransferfunctionsobtainedfrom the literal expressionsin
Table7, while Figures4 and5 showtheq%Eandq'/SCfrequencyresponses,respedtively,for

this simplified modelalongwith the "true" model. Observethat the literal model accurately
approximatesthe"true" modelin the1to 10rad/sfrequencyrange.By comparingsimilar results
for theothertransferfunctionsin Tables4, 6, and8, oneobservesthatthe literal approximations

arequiteaccurate.
Now to exposetheparametersaffectingthenonminimumphasezero in the q'/5 E transfer

: 5,z
function (see Table 6), consider the expression for fll(T)q appearing in Table 7, or

(:)5: b- po2-4c]:/2
h:T q"= 2 + 2F:a

-- -3.3 + (-0.23)

(13)

with the follo_'ing numerical values:

Mq = -0.830 1/s

F:5_= -866. 1/s 2

_:'(x) = 0.0210 ft/ft

M_E = -5.12 1/S 2

(oh2-F:n ,) = 34.8 1/s 2

b = 0.912 1/s

Flq = -78.4 1/s

(2_:oh-F:ri)s = 0.621 1/s

c =-13.6 1/s 2

As seen from Eq. (13), the zero location is primarily a function of the first te,_ b - [b2 - 4c]:a
2

which in turn is primarily a function of the parameter c as given in Table 7, or
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(Oh2-F1n_)M _
c = (14)

Mr_- _h'(x)Fl_E

Evidently, the key parameters are the elevator control derivatives MSE and FI6 E, elastic mode

structural frequency and aerodynamic stiffness (co 12-F1.%), and the elastic mode slope Ol'(x).

From the denominator in Eq. (14), it is apparent that the nonminimum phase characteristic is

directly related to the control power affecting the rigid-body and elastic pitch motions (i.e., "up

elevator" induces rigid-My "pitch up" and elastic "pitch down"). Further, it can be seen how the

pitch-rate sensor location, thru _bl'(x), and the aeroelastic mode frequency (c012-Flnl) affect the

nonminimum phase characteristics.

Attention is now turned to the lightly damped complex poles in the q'/8 E transfer function

(see Table 6). The expression for the damping term (2_c0)fl appearing in Table 7 is

(2_m)_i = (2_loh-F1Ti) +
(oh 2 -Fln,)

= 0.62 + 0.35

VT1 + + VT )M-_ ]Fla
(15)

with the following numerical values:

(1 + Z__ 1.03
VT) =

Mn= = --0.00390 1/s

(oh2_ Fln:) =34.8 1/s 2

- -0.00267 1/s

VT i -

FL, = -1,040 1/s 2

(2r_oh - F1%) = 0.621 1/s

As seen from Eq. (15), the low damping is primarily due to the low elastic mode structural and

aerodynamic damping (2_1co 1 - FI_,). However, note that approximately 1/3 of the total damping

originates from other sources, such as aerodynamic coupling between the rigid and elastic degrees
Z, Z

(1 -------q-)M._.Fa ).
of freedom (i.e., M%F1, VTF1, + VT 1

fl

Finally, consider the dipole structure in the q'/SC transfer function (see Table 6). The

dipole consists of the lightly damped complex poles [s 2 + (2_c0)fls + (m2) h] and lightly damped

complex zeros [s 2 + _1(2_m) _i-_'cs+ fl (°'°') _c]. The relative location of the pole and zero along the jm
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axis is determinedprimarily by the differencebetweenthenaturalfrequencyterms(o_--)qand

h(¢a'2)_ appearingin Table7, or

(_)q - h (0``2)_cq. = (%2-Fin ,) +

Z

(16)

+ ch'(x)(1_ M=
+ VT, )

*l'(x)

(-6.5) }

with the following numerical values:

7._

(1 + _T ) = 1.03 Ma =-3.33 1/S 2 Ivfn_ =--0.0655 1/s 2
"1

M_c = 0.809 1/s 2 FI: = -1,040 1/s 2 Fla c = -631.1/s 2

(oh2 - FI@ = 34.8 1/s 2 ¢1'(x) = 0.0210 ft/ft

As seen from Eq. (16), the second and third terms approximately cancel, leaving the dipole

structure primarily a function of the elastic mode structural frequency and aerodynamic stiffness

(o)12 - Fin), stability derivatives @, M_, and Mnl , and the elastic mode slope ¢l'(x). For
-1

f_ed stability derivatives Z° Mr, and it is apparent the pole location is directly related to
VT_ ' , M.n_,

the elastic mode structural frequency and aerodynamic stiffness, while the zero location is directly

related to the q' sensor location thru the elastic mode slope.

Conclusions

The importance of a dynamic model's validity in the (multivariable) region of crossover

was underscored, and three model simplification techniques capable of delivering valid models (in

this sense) were presented. Classical truncation and residualization were shown to be capable of

yielding a good low-order model, but a newer numerical procedure known as the frequency-

weighted balanced technique led to superior results in this case.

A literal simplified model was also shown to yield excellent results, and the procedure was

presented herein. This approach, furthermore, was shown to lead to closed-form analytical

expression for the key dynamic characteristics, and hence expose the fundamental causes for these

characteristics.
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Tal_le 2 Frequency Weighted Internally Balan?ed Reduction

Given' System state space description A, B, C, D and weighting

filter state space description A w, Bw, Cw

Find: r_ order system

Step 1: Solve for X and Y from

•_w X21 X22 J + CwTB T 0 BwBw TX21 X22 Aw T + = 0

C"wTBT AwT Y21 Y22 J Y21 Y22 0 ,_ CwTDTC CwTDTDC--w

=0

Step 2:

Step 3:

Find T and Z where XY=TZ2T "1, T=[Tr, Tn_r], T'T=[Ur, Un_r]

Z2__.IXr2 0 ]
0 Z n.r2

Xr2 = diag(vctvo) i=1, ..., r

Xn.r 2 = diag(vcvo) i=r+l, ..., n

VcVol_...> V%Vo._ 0

r± order system is

A r = UrTATr

Br = UrTB

C r = CT r

Dr= D
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Table 4. Transfer Functions For The True Model

G_(s) = 52s(s+0.0089)(s+0.020-__jl.7)(s.+0.36__ll)(s+l.0+jll)(s-l.5_+j12)(s+3.1+j14)/D(s) (ft/s2/rad)

G_(s) = 8.0s(s+0.051) (s+0.20) (s-3.6) (s+4.0) (s +0.36+j 11) (s +2.8__13) (s-0.57_+j13) / D (s) (rad/s / rad)

G_(s) = -240s(s+0.0081)(s-0.17__l.8)(s+0.90_4.1)(s+0.23_+jll)(s+0.36+jll)(s+2.6_+j13)/D(s) (ft/s2/rad)

Ga,C(s) = 16s(s+0.055)(s+0.12)(s+0.60_+j2.9)(s+0.26_+jll)(s+0 36_+jll)(s+2.6_13)/D(s) (rad/s/rad)
q _ • m

where

D(s) = (s-0.033) (s+O.O4o)(s+O.4____j1.2)(s+O.44_j6.0)(s+O.22.t_jl 1)(s+0.36+il l)(s+2.6_+j13)



Table 5. Transfer Functions For The Truncated/b-_CrIB Model

Ga_(s) = 52(s+0.020_+jl.7)(s-l.2___14)/D(s) (ft/s2/rad)

G_,E(s) = 15(s+0.088)(s-2.9)(s+3.9)/D(s) (rad/s/rad)
q

G_(s) =-240(s-0.18_+jl.8)(s+0.92_._4.1)/D(s) (ft/s2/rad)

G_,C(s) = 15(s+0.090)(s+0.70_+j2.9)/D(s) (rad/s/rad)
q

where

D(s) = (s+0.46_jl.2)(s+0.44_j6.0)



Table 6. Transfer Functions For The Truncated/Residulization Model

Ga_(S) = 46s(s+0.014__l.7)(s-l,7_+j14)/D(s) (ft/s2/rad)

G_,(s) = 13s(s+0.23)(s-3.4)(s+4.0)/D(s) (rad/s/rad)
q

G_(s) =-240s(s-0.17_+jl.8)(s+l.0_4.2)/D(s) (ft/s2/rad)

GSC(s) = 14s(s+0.16)(s+0.66_+j3.0)/D(s) (rad/s/rad)
q

where

D(s) = s(s+0.44_jl.2)(s+0.50!-_j6.0)
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Table 8. Transfer Functions For The Approximate Literal Model

Ga_(s) = 46s(s+0.13_2.0)(s-l.9±j14)/D(s) (ft/s2/rad)

G_(s) = 13s(s+0.20)(s-3.5)(s+3.9)/D(s) (rad/s/rad)
q

G_a_(s) =-240s(s-0.11+jl.8)(s+0.72_j4.0)/D(s)(ft/s2/rad)

Ga,C(s) = 14s(s+0.16)(s+0.74__2.8)/D(s) (rad/s/rad)
q

where

D(s) = s(s+0.45±jl.2)(s+0.48_+j6.0)
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Figure I. Generic Feedback Configuration
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